Common Issues and Troubleshooting

Chipping or Edge Damage During the Milling Process

Cause A: Insufficient equipment cooling or excessive cutting speed.

Solution A: Check coolant/water spray nozzle positioning and reduce cutting speed as needed.

Cause B: Bur overuse or severe coating wear.

Solution B: Replace glass-ceramic burs after 20–25 uses; discard if worn.

Fracture or Chipping During Clinical Try-in

Cause A: Improper tooth preparation (sharp edges or excessive undercuts).

Solution A: Modify the design to eliminate stress concentration points. Use smooth, rounded margins to reduce the risk of cracks.

Cause B: Inadequate crown thickness.

Solution B: Use chamfer or rounded shoulder margin design with adequate material thickness. For optimal results, the minimum thickness should be 0.3–0.4 mm for glass-ceramic veneers (labial side) and 0.5–0.8 mm for full crowns.

Color Mismatch After Sintering

Cause A: Incorrect sintering program selection, color change after crystallization.

Solution A: Follow Besmile's recommended sintering curve for crystallization or adjust shade using external staining paste.

Cause B: Temperature too low or too high. Low temperature may result in lighter shade; high temperature may cause partial melting and rounded/blunt margins.

Solution B: Follow Besmile's recommended sintering curves or adjust the final shade using staining paste.

Cause C: Incorrect sintering temperature (too low/high). Low temperatures may cause overly light shades, while excessive heat may lead to rounded edges from partial melting.

Solution C: Optimize temperature to avoid color shifts or edge melting.

Threading Marks or Other Machining Defects

Cause: Improper cutting parameters or poor device calibration.

Solution: Select appropriate milling parameters (speed, feed rate, etc.) according to the guidelines and perform regular milling machine calibration.

About Besmile

Besmile is a global digital solutions provider for restorative and implant dentistry.

We offer integrated systems—premium CAD/CAM materials, advanced equipment, and precision implant systems—designed to streamline workflows and ensure reliable results.

All core products are developed and manufactured in-house, ensuring consistent quality and continuous innovation.

Trusted by over 1,000 partners in more than 100 countries, we empower dental professionals to create confident, lasting smiles.

Technology creates the best smile.

Chengdu Besmile Medical Technology Co.,Ltd.,

www.bsmdental.com

T: +86-28-85317108

E: info@cdbesmile.com

Besmile Dental America Inc.

20311 Valley Blvd, Suite I, Walnut, CA 91789

T: (626)921-5798

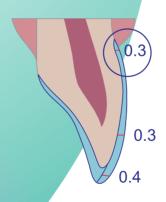
E: sales@bsmdentalus.com

V2.1

Glazic Lifelike Aesthetics with Superior Strength

Your ideal all-ceramic material for gesthetic restorations

Glazic is a zirconia-reinforced lithium disilicate glass ceramic made of nano high-quality raw materials, obtaining a fine-grained microstructure with outstanding machinablity and stable aesthetic results. With its excellent mechanical strength, desirable shade and natural fluorescence opalescence, as well as simple processing and minimally invasive features, Glazic is the ideal all-ceramic all-ceramic material for chairside aesthetic restorations.


■ Lifelike Aesthetics

Reproducing the aesthetic effect of natural teeth

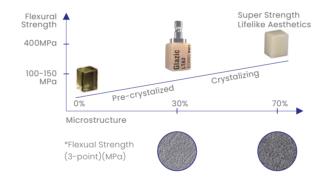
- Outstanding translucency and gloss
- Lifelike opalescence with natural fluorescence
- Personalized aesthetics with a full range of shades

Super Minimally Invasive

Preserving the natural tooth structure

- Ultra-thin veneer to 0.3mm
- Maximum preservation of natural tooth
- Supports long-term endodontic health

Easy to Process



Achieving efficient and reliable restorations with ease

- Ideal material for CAD/CAM processing with optimized strength
- Fine and uniform microstructure ensures high edge stability, no chipping or hidden cracks
- Reduces bur wear and extends the service life of milling tools

Super Strength

Contributing to the long-time stability of restorations

- Ultra fine-grained microstructure with completely dissolved zirconia in glass
- Flexural Strength (3-point) ≥ 400 MPa (up to 3-unit anterior bridge)

Indications

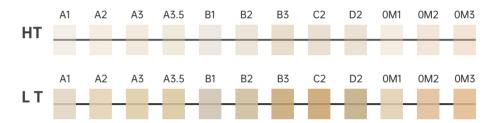
Inlays/Onlays

Reduced crowns

Partial crowns Full contour crowns Full contour crowns Full contour bridges (anterior)

(posterior)

■ Translucency Level



Ideal for precise repair of small defects (inlays, onlays and for restorations on normal-colored abutments, etc.), featuring lifelike translucency, opalescence and

Excellent for larger esthetic crown restorations (partial crowns, full-contour crowns, reduced crowns, etc.) with superior masking ability and brilliant shades.

Available Shades

Specification

Glazic	Dimensions(mm)	Pcs/Pack
Glazic LTA3 BSM	18.5*14.9*12.5	5 Pcs

Material Properties

Composition	SiO ₂ , Al ₂ O ₃ , Li ₂ O, K ₂ O, Na ₂ O, ZrO ₂ , other oxides etc.
Density(g/cm³)	≥2.2
Vickers hardness(HV10)	480-520(Crystallized)
Flexual strength(3-point)[MPa]	≥400
Fracture toughness(MPam½)	>2.5
Chemical solubility(μg/cm²)	<100
CTE(500°C)[10-6K]	9.7±0.5
Crystallization Temp.[°C]	840